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ABSTRACT

Including covariant information, such as position, force, velocity or spin is impor-
tant in many tasks in computational physics and chemistry. We introduce Steerable
E(3) Equivariant Graph Neural Networks (SEGNNs) that generalise equivariant
graph networks, such that node and edge attributes are not restricted to invariant
scalars, but can contain covariant information, such as vectors or tensors. This
model, composed of steerable MLPs, is able to incorporate geometric and physical
information in both the message and update functions. Through the definition of
steerable node attributes, the MLPs provide a new class of activation functions
for general use with steerable feature fields. We discuss ours and related work
through the lens of equivariant non-linear convolutions, which further allows us to
pin-point the successful components of SEGNNs: non-linear message aggregation
improves upon classic linear (steerable) point convolutions; steerable messages
improve upon recent equivariant graph networks that send invariant messages. We
demonstrate the effectiveness of our method on several tasks in computational
physics and chemistry and provide extensive ablation studies.

I INTRODUCTION

The success of Convolutional Neural Networks (CNNs) (LeCun et al., 1998; (2015; Schmidhuber,
2015; Krizhevsky et al., 2012) is a key factor for the rise of deep leaming, attributed to their capability
of exploiting translation symmetries, hereby introducing a strong inductive bias. Recent work has
shown that designing CNNss to exploit additional symmetries via group convolutions has even further
increased their performance hen & Welling, 2016; 2017; Worrall et al., 2017; Cohen et al.
2018; Kondor & Trivedi, 2018; Weiler et al., 2018; Bekkers et al., 2018; Bekkers, 2019; Weiler &
Cesa, 2019). Graph neural networks (GNNs) and CNNs are closely related to each other via their
aggregation of local information. More precisely, CNNs can be formulated as message passing
layers (Gilmer et al., 2017) based on a sum aggregation of messages that are obtained by relative
position-dependent /inear transformations of neighbouring node features. The power of message
passing layers is, however, that node features are transformed and propagated in a highly non-linear
manner. Equivariant GNNs have been proposed before as either PointConv-type (Wu et al.|[2019;
Kristof et al., 2017) implementations of steerable (Thomas et al., 2018; Anderson et al.| 2019; Fuchs
et al., 2020) or regular group convolutions (Finzi et al., 2020). The most important co nt in
these methods are the convolution layers. Although powerful, such layers only (pseud%ol?:eady
transform the graphs and non-linearity is only obtained via point-wise activations.

"Methods such as SE(3)-transformers {Fuchs et al.,l2020) and Cormorant (Andctson et al.l[20|9) include an
input-dependent attention component that augments the convolutions.
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Abstract

Physical theories grounded in mathematical symmetries are an essential component of our under-
standing of a wide range of properties of the universe. Similarly, in the domain of machine learning, an
awarencss of symmetries such as rotation or permutation invariance has driven impressive performance
breakthroughs in computer vision, natural language processing, and other important applications. In this
report, we argue that both the physics community and the broader machine learning community have
much to understand and potentially to gain from a deeper investment in research concerning symmetry
group equivariant machine learning architectures. For some applications, the introduction of symmetries
into the fundamental structural design can yield models that are more economical (i.e. contain fewer, but
more expressive, learned parameters), interpretable (i.c. more explainable or directly mappable to physical
quantities), and/or trainable (i.e. more efficient in both data and computational requirements). We discuss
various figures of merit for evaluating these models as well as some potential benefits and limitations
of these methods for a variety of physics applications. Rescarch and investment into these approaches
will lay the foundation for future architectures that are potentially more robust under new computational
paradigms and will provide a richer description of the physical systems to which they are applied.
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Abstract

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process
symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular
promise in molecular modeling applications, in which various molecular representations with different symme-
try properties and levels of abstraction exist. This review provides a structured and harmonized overview of
molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum
chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementar-
ity to well-established molecular descriptors. This review provides an overview of current challenges and
opportunities, and presents a forecast of the future of GDL for molecular sciences.

1 Introduction

Recent advances in deep learning, which is an instance
of artificial intelligence (Al) based on neural networks
(1} [2), have led to numerous applications in the molec-
ular sciences, e.g., in drug discovery @, quantum
chemistry @, and structural biology @ . Two charac-
teristics of deep learning render it particularly promis-
ing when applied to molecules. First, deep learning
methods can cope with "unstructured" data represen-
tations, such as text sequences @%speech signals [10,
11, images [12/14), and graphs [15, [16]. This ability
is particularly useful for molecular systems, for which
chemists have developed many models (i.e., "molecu-
lar representations") that capture molecular properties
at varying levels of abstraction (Figure D The sec-
ond key characteristic is that deep learning can per-
form feature extraction (or feature learning) from the
input data, that is, produce data-driven features from
the input data without the need for manual interven-
tion. These two characteristics are promising for deep
learning as a complement to “classical” machine learning
applications (e.g., Quantitative Structure-Activity Re-
lationship [QSAR]), in which molecular features (ie.,
*molecular descriptors” [17]) are encoded a priori with
rule-based algorithms. The capability to learn from un-
structured data and obtain data-driven molecular fea-
tures has led to unprecedented applications of Al in the
molecular sciences.

One of the most promising advances in deep learn-
ing is geometric deep learning (GDL). Geometric deep
learning is an umbrella term encompassing emerging
techniques which generalize neural networks to Eu-
clidean and non-Euclidean domains, such as graphs,
manifolds, meshes, or string representations . In
general, GDL encompasses approaches that incorpo-
rate a geometric prior, i.e., information on the structure
space and symmetry properties of the input variables.
Such a geometric prior is leveraged to improve the qual-
ity of the information captured by the model. Although
GDL has been increasingly applied to molecular mod-
eling [5. 18, [19), its full potential in the field is still
untapped.

b
a iio'-'
N
D g .

c
CC1{C) [CQH) (C (0)=0)N2 [CRQH) (CC2) 51

Figure 1: Exemplary molecular representations for a
selected molecule (i.e., the penam substructure of peni-
cillin)

a. Two-dimensional (2D) depiction (Kekulé structure).
b. Molecular graph (2D}, composed of vertices (atoms)
and edges (bonds).

c. SMILES string [20]. in which atom type, bond type
and connectivity are specified by alphanumerical char-
acters.

d. Three-dimensional (3D) graph, composed of vertices
(atoms), their position (z. y, 2 coordinates) in 3D space,
and edges (bonds).

e. Molecular surface represented as a mesh colored ac-
cording to the respective atom types.

The aim of this review is to (i) provide a structured
and harmonized overview of the applications of GDL
on molecular systems, (ii) delineate the main research
directions in the field, and (iii) provide a forecast of
the future impact of GDL. Three fields of application
are highlighted, namely drug discovery. quantum chem-
istry, and computer-aided synthesis planning (CASP),
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Abstract

We propose a self-supervised capsule architecture for 3D point clouds. We compute
capsule decompositions of objects through permutation-equivariant attention, and
self-supervise the process by training with pairs of randomly rotated objects. Our
key idea is to aggregate the attention masks into semantic keypoints, and use these
to supervise a decomposition that satisfies the capsule invariance/equivariance prop-
erties. This not only enables the training of a semantically consistent decomposition,
but also allows us to leam a canonicalization operation that enables object-centric
reasoning. To train our neural network we require neither classification labels nor
manually-aligned training datasets. Yet, by learning an object-centric representa-
tion in a self-supervised manner, our method outperforms the state-of-the-art on
3D point cloud reconstruction, canonicalization, and unsupervised classification.

putational Chemistry 3D Computer Vision >+

1 Introduction

Understanding objects is one of the core problems of vision [32, 14, 38). While this

task has traditionally relied on large annotated datasets 22), unsupervised approaches that

utilize self-supervision [S] have emerged to remove the need for labels. Recently, researchers have

attempted to extend these methods to work on 3D point clouds [59], but the field of unsupervised 3D

learning remains relatively uncharted. Conversely, rescarchers have been extensively investigating

iD tations for auto-encoding' [61,/19,133,/16], making one wonder whether these - - =y -

discmtmow bcncﬁtsft::ﬁ ummﬂﬂleum'ng for tasks other Ilgmn auto-encoding. ic and PhyS|caI Quantities improve = (3)

Importantly, these recent methods for 3D representation learning are not entirely unsupervised.
Whether using point clouds [61), meshes [19], or implicits [33], they owe much of their success
to the bias within the dataset that was used for training. Specifically, all 3D models in the popular i i i _
ShapeNet (3] damam“object-ocnuic"—mcympc-cmcaﬁzidwaunitbomding bg:,i’m sentations. Nature Machine Intelligence, 1-10.
even more importantly, with an orientation that synchronizes object semantics to Euclidean frame ) ) )
axes (e.g. airplane cockpit is always along +y, car wheels always touch z = 0). Differentiable Canonical capsules: Unsupervised capsules in
3D decoders are heavily affected by the consistent alignment of their output with an Euclidean

frame [8, [16] as local-to-global transformations cannot be easily learnt by fully connected layers.
As we will show in Section[f.2, these methods fail in the absence of pre-alignment, even when data

, — - , , jJant Attention Networks for Shape Reconstruction MRl * ™ ™ CF F N N 1 v N 7SN+ A :
Auto-encoding is also at times referred to as “reconstruction” or “shape-space”™ learning. . 4 s 3§ La v S N N S P ;| ) -
) i ) t:O PR | I i N . t\ :\ i — - & g f |. ‘i 1 " -
33 Confbeence on Nearal Informatien Processiag Systes (NewiFs 2021), virual Recent Geometric Flows in Multi-orientation I by ST, L, VRN B B T
prithms in Computer Vision and Imaging: . \ \ " \ 2 4 PR P ca XN
Also see:
*Bogatskiy, A., Ganguly, S., Kipf, T., Kondor, R., Miller, D. W., Murnane, D., ... & Thais, S. (2022). Symmetry Group Equivariant 5
Architectures for Physics. arXiv preprint arXiv:2203.06153. Medical |mage Ana|y5|s

*Sajnani, R., Poulenard, A., Jain, J., Dua, R., Guibas, L. J., & Sridhar, S. (2022). ConDor: Self-Supervised Canonicalization of 3D Pose for
Partial Shapes. arXiv preprint arXiv:2201.07788.



Canonical Capsules:

Self-Supervised Capsules in Canonical Pose

Weiwei Sun'4* Andrea Tagliasacchi®** Boyang

Soroosh Yazdani® Geoffrey Hinton”*

'University of British Columbia, “University
3Google Research, *University of Victoria, “equ

[https ://canonical-capsules.git

Abstract

We propose a self-supervised capsule architecture for 3D pe
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even more importantly, with an orientation that synchronizes obje
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As we will show in Section[d.2, these methods fail in the absence of
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Figure 1. ConDor is a self-supervised method that leams to Canonicalize the 3D orientation and position (3D pose) for full and partial
shapes. (left) Our method takes un-canonicalized 3D point clouds (gray) from different categories as input and produces consistently
canonicalized outputs (colored). (right) Our method can also operate on partial point clouds (missing part of shape shown only for
visualization). In addition, ConDor can also leamn consistent co-segmentation of shapes without supervision, visualized as colored parts.

Abstract

Progress in 3D object understanding has relied on manu-
ally “canonicalized” shape datasets that contain instances
with consistent position and orientation (3D pose). This
has made it hard to generalize these methods to in-the-wild
shapes, e.g., from internet model collections or depth sen-
sors. ConDor is a self-supervised method that learns to
Cangnicalize the 3D orientation and position for full and
partial 3D point clouds. We build on top of Tensor Field
Nerworks (TFNs), a class of permutation- and rotation-
equivariant, and translation-invariant 3D networks. Dur-
ing inference, our method takes an unseen full or partial
3D point cloud at an arbitrary pose and outputs an equiv-
ariant canonical pose. During training, this network uses
self-supervision losses to learn the canonical pose from
an un-canonicalized collection of full and partial 3D point
clouds. ConDor can also learn to consistently co-segment
object parts without any supervision. Extensive quantitative
results on four new metrics show that our approach out-
performs existing methods while enabling new applications
such as operation on depth images and annotation transfer.

1. Introduction

Humans have the ability to recognize 3D objects in
a wide variety of positions and orientations (poses) [1V],
cven if objects are occluded. We also seem to prefer cer-

tain canonical views [10], with evidence indicating that an
object in a new posc is mentally rotated to a canonical
pose [46] to aid recognition. Inspired by this, we aim to
build scene understanding methods that reason about ob-
jects in different poses by learning to map them to a canon-
ical pose without explicit supervision.

Given a 3D object shape, the goal of instance-level
canonicalization 1s to find an equivariant frame of refer-
ence that is consistent relative to the geometry of the shape
under different 3D poses. This problem can be solved if we
have shape correspondences and a way to find a distinctive
equivariant frame (e.g., PCA). However, it becomes signifi-
cantly harder if we want to operate on different 3D poses
of different object instances that lack correspondences.
This category-level canonicalization problem has received
much less attention despite tremendous interest in category-
level 3D object understanding (%, 11, 13, 24, 25, 30, 55].
Most methods rely on data augmentation (2], or man-
ually annotated datasets [, 5°] containing instances that
arc consistently positioned and oriented within each cat-
egory [43,47,51]. This has prevented broader applica-
tion of these methods to un-canonicalized data sources,
such as online model collections [!]. The problem is fur-
ther exacerbated by the difficulty of canonicalizing partial
shape observations (e.g., from depth maps [ °]), or symmet-
ric objects that require an understanding of inter-instance
part rclationships. Recent work addresses these limitations
using weakly-supervised [ 14, 37] or self-supervised learn-
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Figure 1. ConDor is a self-supervised method that leams to Canonicalize the 3D orientation and position (3D pose) for full and partial
shapes. (left) Our method takes un-canonicalized 3D point clouds (gray) from different categories as input and produces consistently
canonicalized outputs (colored). (right) Our method can also operate on partial point clouds (missing part of shape shown only for
visualization). In addition, ConDor can also leamn consistent co-segmentation of shapes without supervision, visualized as colored parts.

Abstract

Progress in 3D object understanding has relied on manu-
ally “canonicalized” shape datasets that contain instances
with consistent position and orientation (3D pose). This
has made it hard to generalize these methods to in-the-wild
shapes, e.g., from internet model collections or depth sen-
sors. ConDor is a self-supervised method that learns to
Cangnicalize the 3D orientation and position for full and
partial 3D point clouds. We build on top of Tensor Field
Networks (TFNs), a class of permutation- and rotation-
equivariant, and translation-invariant 3D networks. Dur-
ing inference, our method takes an unseen full or partial
3D point cloud at an arbitrary pose and outputs an equiv-
ariant canonical pose. During training, this network uses
self-supervision losses to learn the canonical pose from
an un-canonicalized collection of full and partial 3D point
clouds. ConDor can also learn to consistently co-segment
object parts without any supervision. Extensive quantitative
results on four new metrics show that our approach out-
performs existing methods while enabling new applications
such as operation on depth images and annotation transfer.

1. Introduction

Humans have the ability to recognize 3D objects in
a wide variety of positions and orientations (poses) [1Y],
cven if objects are occluded. We also seem to prefer cer-

tain canonical views [10], with evidence indicating that an
object in a new posc is mentally rotated to a canonical
pose [46] to aid recognition. Inspired by this, we aim to
build scene understanding methods that reason about ob-
jects in different poses by learning to map them to a canon-
ical pose without explicit supervision.

Given a 3D object shape, the goal of instance-level
canonicalization 1s to find an equivarians frame of refer-
ence that is consistent relative to the geometry of the shape
under different 3D poses. This problem can be solved if we
have shape correspondences and a way to find a distinctive
equivariant frame (e.g., PCA). However, it becomes signifi-
cantly harder if we want to operate on different 3D poses
of different object instances that lack correspondences.
This category-level canonicalization problem has received
much less attention despite tremendous interest in category-
level 3D object understanding [#, 11, 13, 24, 25, 30, 55].
Most methods rely on data augmentation [22], or man-
ually annotated datasets [, 55] containing instances that
arc consistently positioned and oriented within cach cat-
egory [43,47,51]. This has prevented broader applica-
tion of these methods to un-canonicalized data sources,
such as online model collections [1]. The problem is fur-
ther exacerbated by the difficulty of canonicalizing partial
shape observations (e.g., from depth maps [5]), or symmet-
ric objects that require an understanding of inter-instance
part relationships. Recent work addresses these limitations
using weakly-supervised 14, 77] or self-supervised learn-
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Fig. 1: (Above): Sparse point clouds individually SE(3)-transformed to form a
single scene of nine objects. (Below): Our equivariant reconstruction. The net-
work is agnostic to the number, position and orientation of the objects and is
trained only on single objects in canonical pose.

D W- . Abstract. We propose the first SE(3)-equivariant coordinate-based net-
s work for learning occupancy fields from point clouds. In contrast to previ-

MRI ous shape reconstruction methods that align the input to a regular grid,
’ we operate directly on the irregular, unoriented point cloud. We leverage

t:O : attention mechanisms in order to preserve the set structure (permuta-
tion equivariance and variable length) of the input. At the same time,

- attention layers enable local shape modelling, a crucial property for scal-
< ability to large scenes. In contrast to architectures that create a global
signature for the shape, we operate on local tokens. Given an unoriented,

sparse, noisy point cloud as input, we produce equivariant features for

each point. These serve as keys and values for the subsequent equivariant

cross-attention blocks that parametrize the occupancy field. By query-

ing an arbitrary point in space, we predict its occupancy score. We show
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Lecture 2.7

Steerable G-CNNs as Clebsch-Gordan networks

H(f)x) = J
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